STRESSES IN A WEDGE AS A RESULT OF
SYMMETRICALLY AND ANTISYMMETRICALLY
DISTRIBUTED LOAD AND TEMPERATURE

V. M. Khorol'skii UDC 539.319:536.21

The problem of determining the thermoelastic stresses from a linear heat source located
at the apex of a wedge reduces to the basic problem of the theory of elasticity with external
forces presented in the form of several functional series. The stresses are determined by
means of the complex Kolosov —Muskhelishvili representation.

Let us examine the quasistatic problem of the distribution of thermal stresses in an infinite wedge
with adiabatic boundaries and a divergence angle 2y = II. For definiteness, we consider the case of a plane
stressed state. We assume that the thermophysical coefficients of the material do not exceed the limits
of elasticity and are independent of temperature. Let a linear heat source whose intensity varies as gexp
(iwt) be applied at the apex of the wedge (r = 0; —¢ = ¢ =¥) . We know [3] that the temperature in a steady-
state periodic regime is equal to

21«17 exp (iof) K, (pr). (1)

Here p = ¥ (w/ @)i; w and q are constants.
The steady-state periodic thermal stresses are determined [3, 4] as the sum of the stresses
qu = E(p + T)-q;v g, = Er +?rv Trp= FI‘P + ’E_—ICP' (2)

The stresses with a single overscore are determined through the thermoelastic potential of the dis-
placements 6 from the formulas
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%:_QG_%%_, 3, + 0, = — 2GA0, (3)
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The stresses with two overscores are determined here by means of the Airy function in complex
form, and the boundary conditions for this function, given an absence of external loads, are found from the
equation

Op+ iTg= — (0 -+ iT,q) when @ = & §. (5)
Proceeding from the equation
L= (1 + p)aaT,
we determine the thermoelastic potential of the displacements

(1 + p)aag

0=AK,(pr), A= kb

exp (iot). (6)
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The stresses with one overscore, according to 3) and (4), have the form

0+ 0, =—AK,(pr), o5=—Af(pr), Ty =0, (7

where

Flor) = Ky (or) + —Kp(%) A= 264,

Congidering the familiar series for the Bessel functions, we obtain the boundary conditions for the
stress function in the form

Oy + iTy = AN p*"{a, Inp + B} + A(2p)7 when ¢ = & . (8)

n=0

Here we denote

%241 B, = @Gn+Dyn+1)—yn+2) o= P20
2nt n+1)" " 4nl (n + 1) ' 2’

1) =—y*+1 4 L2+ o+ yr o077
n

which is the Euler constant. In the boundary conditions the term in the form of 2p)"% produces no thermo-
elastic stresses and, consequently, it can be eliminated. We have derived a representation of the boundary
conditions in the form of several functional series which are generalizations of the power series.

This is the problem which we find in studying a linear heat source at the apex of a wedge when we
consider the transfer of heat to the side surfaces [1] in a steady~state regime:

T = %"ﬂ Ky (mr), o= —Ef (mr),
G(l +pag
iy ’

I we examine the instantaneous or continuous sources at the apex of the wedge, as follows from [6], the
boundary conditions can be represented in the form of power series.

0, + Gp= — EKy(mr), t,,=0; E =

We can draw the conclusion that a number of problems relating to thermal elasticity for a wedge can
be reduced to the basic problem of the theory of elasticity, if at the sides of the wedge we have distributed
the surface forces that are symmetrical or antisymmetrical with respect to the axis of symmetry and if
they are specified in the form of power series or in the form of certain generalizations. This is explained
by the fact that the functions satisfying the equations of heat conduction are analytical with respect to the
coordinates [5].

We solve the stated problem in general form.

Let surface forces specified in the form of converging series in the interval (0, =) be distributed on
the sides of the wedge:

0 + el = X 1" (@n 107 + Ba), &
n=0

(O9 + iTglomyp = £ 3 1" (@ In7 + B1). (10)
n=0

In the following we will consider only the case of symmetrical loads, i.e., the plus sign is taken in (10).
The solution for the antisymmetrical loads is achieved in analogous fashion.

We seek [3] the complex stresses in the form

0, + 0y =2[D(2) + D (2], (1
Op + iT,o= D (2) + D7) 4 2% [20 () + ¥ (2)]. (12)
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We select the unknown analytical functions ®(x) and ¥(z) in the form

D) = i Z*a,Inz+b,), ¥()= i e, Inz +e,). (13)

n==0 n=:=0

Here we can assume that by is a real number.

Considering the representations

D)+ ‘_i’(—@ = 2 Re{zn(anlnz'_'l_bn)}’ 14
=0
%0 20’ (2) + ¥ (2)] = i {(cp,Inz+e;)e? 4-a,} + i nz"(a, Inz -+ by), (15)
n=0 n=1

where z = rel?, lnz =Inr +ig (¢ is the principal value of the argument) and the boundary conditions (9)
and (10), respectively equating the coefficients for r and r®lnr, we obtain a system of equations for the
unknowns &y, by, ¢y, and ey. Following simple calculations, solution of this system yields

_ % sin2¢ Im§, . _ 2ilmB, .  2Refy—ug, |
a, = —1 ;e = 3 by = ;
2 A, A, 4

Ima, 7.
Af? ]

Rea,
ALY

an:sin(n+2)\p[ +i

¢, sin 2% = a_sin 2 —a, sinap, c, = 0;
n n n 0

Re A, . ImA, |
A0 I

A, =B, sin(n + 2)¢ + apcos{n + 2) P —2a, cos 2 (n + 1) p — a, sin 24;
e, sin 2y = — B, sinnp + 2, cos 2mp — 0, cos 2 -+ b, sin 2

b, =

AL = (n 4 1)sin 2¢ + sin2(n + 1)¢, A, = 2 cos 2¢ — sin 2.

It follows from this system of equations that the number ¢, must be real. All of the coefficients under these
assumptions are uniquely defined and calculated in sequence. Considering (14) and (15), separating the real
and imaginary parts, the theoretical formulas for the stresses are written out in accordance with (11) and (12).

Let us consider the particularly important special case in which the load is specified at the side in the
form of power series

@
O+ iT,p= 2 B.r" when ¢ = =+ .
=0

To find a solution for this problem, it must be assumed in the previous formulas that ¢y = @y =cy = 0, a4
= 0. We find

bn=sin(n+2)w[ Rebn 1y Imbe ] g — i SM2pImp,
n An AO
_2pImB,

e, sin 29 = — P, sinng + b, sin 2np, e, =i A
0
This case is of independent interest in the theory of elasticity, since the representation of the external loads
in the form of power series is not burdensome in actual practice. This follows from the well-established
fact that any smooth function can always be approximated by polynomials with whatever degree of accuracy
is required.

In conclusion, we note that the uniform convergence of the series in the boundary conditions ensures
uniform convergence of the series defining the complex functions and the stress components.

The case of the half-plane ¢ = II/ 2 must either be examined separately or the solution must be found
from the general passage to the limit.
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NOTATION

t is the time;

g,a, A h, o, G are the Poigson coefficient, the coefficient of thermal diffusivity, the coefficient
of thermal conductivity, the coefficient of linear expansion, the heat-transfer coef-
ficient, and the shear modulus;

A is the wedge thickness;

@, ¢), g, or, Trep  are the coordinates of the points and of the stresses in a polar coordinate system,
and the polar axis coincides with the wedge'’s axis of symmetry;

Koyir), Kifr) are cylindrical functions of the imaginary argument, of zeroth and first order;
i is imaginary one;

Rez, Imz are the real and imaginary parts of the complex number;

A =08%ort+ (1/1)(8/8r) + (1/1%)(8%/ d¢h);

m?=2h/In.
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